Laboratoire de Glycochimie, des Antimicrobiens
et des Agroressources UMR 7378 CNRS


Nos tutelles

  • Tutelle du CNRS
  • Tutelle UPJV

Nos Fédérations


← Retour vers le trombinoscope


Maître de Conférences

Mail :

Tel : 03 22 82 88 12

Fax : 03 22 82 75 60

Axe de recherche : Chimie pour le Vivant

Description des travaux de recherche

Synthèse de nouveaux dérivés nucléosidiques de la famille des TSAO - Evaluation en tant qu’inhibiteurs vis-à-vis du VIH et du VHC.

Mots clés : N.C.

Sélection de publications

Cyanohydrins and Aminocyanides as Key Intermediates to Various Spiroheterocyclic Sugars
Josse, S.; Postel, D.
Carbohydrate-spiro-heterocycles 2019, 137-169.
Derivatives with a double functionalization attract great interest in organic synthesis. The association on the same carbon atom of a nitrile group and a hydroxyl or amine function allows access to promising heterocyclic compounds of particular interest resulting from reactions taking advantage of the electrophilic character of the cyano group and the nucleophilic character of hydroxyl and amino groups. Thus, α-hydroxynitriles (cyanohydrins) or α-aminonitriles represent important classes of organic intermediates. The development of these families in glycochemistry has allowed syntheses of compounds with chain elongations (Kiliani-Fischer synthesis, Strecker synthesis) or even the preparation of chiral building blocks versatile in asymmetric syntheses of biologically active compounds or their intermediates. In this chapter, we summarize the synthesis of quaternized glycoderivatives such as cyanohydrins or glycoaminonitriles and their uses as intermediates to access spiro-heterocycles. Beyond the great structural diversity, stereochemical aspects will also be identified.

Preparation of nucleoside derivative carrying an isothiazole or oxathiole cycle with an antiproliferative activity
Postel, D.; Marolleau, J.-P.; Josse, S.; Nguyen Van Nhien, A.; Chagnault, V.; Marcq, I.; Bouhlal, H.
Patent 2018, WO2018109416A1.
Nucleoside deriv. carrying an isothiazole or oxathiole cycle I, wherein A is dioxo-isothiazole or dioxo-oxathiole spiro-furan derivs; R is oxygen; R1 is alkyl, alkenyl, alkynyl, hetero-aryl; R2 is H, halogen, alkyl, alkenyl, alkynyl, aryl, hetero-aryl, aryl, were prepd. as antitumor agents with antiproliferative activity. Thus, nucleoside II was prepd. and tested in vitro as antitumor agent (EC50 = 15 μM). [on SciFinder(R)]

Synthesis of phosphorus analogs of TSAO-T
Moura, M.; Josse, S.; Postel, D.
Tetrahedron 2018, 74, 4721-4727.
Phosphorus Analogs of TSAO bearing an oxaphospholene ring instead of an oxathiole dioxide ring at C-3′ position were prepared. Strategy developed previously on saccharidic moiety was used with introduction of an electron withdrawing α group neighboring the phosphorus atom. Biological evaluation on both HIV-1 and HCV showed that these compounds have no activity.

Metal-Free Oxidative Lactonization of Carbohydrates Using Molecular Iodine
Fusaro, M.; Chagnault, V.; Josse, S.; Drillaud, N.; Anquetin, G.; Postel, D.
Carbohydrate Chemistry 2015, 33-38.

Synthesis of 1,2:4,5-Di-O-(3,3-pentylidene) arabitol via Kinetic Acetal Formation
KonradHohlfeld; SolenJosse; SylvainPicon; Bruno, L.
Carbohydrate Chemistry 2014, 231-238.
The synthesis of 1,2:4,5-Di-O-(3,3-pentylidene) arabitol via kinetic acetal formation is presented.