LG2A

Laboratoire de Glycochimie, des Antimicrobiens
et des Agroressources UMR 7378 CNRS

Nos tutelles

  • Tutelle du CNRS
  • Tutelle UPJV

Nos Fédérations

Intranet

Actualités et Publications

Biological impact of octyl D-glucopyranoside based surfactants,

Zdarta, A.; Pacholak, A.; Smułek, W.; Zgoła-Grześkowiak, A.; Ferlin, N.; Bil, A.; Kovensky, J.; Grand, E.; Kaczorek, E.

Chemosphere 2018.

Development of many branches of industry has stimulated the search for new, effective surfactants with interesting properties. Potential use of alkyl glucose derivatives on a large scale, raises questions about the possible risks associated with their entry into the natural environment. To be able to evaluate this risk, the aim of the study was to determine the physicochemical properties of octyl D-glucopyranoside and its three derivatives: N-(octyl D-glucopyranosiduronyl)aspartic acid, N-(octyl D-glucopyranosiduronyl)glicyne and octyl D-glucopyranosiduronic acid. Moreover, their biodegradability by pure bacterial strains and biocenosis present in river water was examined. While descriptions of sugar-based surfactants on microbial cells are limited, the essential element of the study was to determine the effect of surfactants on cell surface properties of microorganisms isolated from activated sludge and compare it to the effects of the petroleum based surfactants and the surfactants produced from renewable materials. The results obtained indicate that physicochemical properties of surface active agents differ depending on the presence of functional groups in the surfactants molecules. What is more, the presence of amino acid substituent in the derivatives of octyl D-glucopyranoside resulted in a slight decrease in the surfactants biodegradation efficiency, in comparison to the compounds that did not contain such a substituent, prolonging this process from 5 to 10 days. Interestingly, even relatively slightly different derivatives modified the cell surface properties in a different way. Importantly, the surfactants based on octyl D-glucopyranoside have less negative impact on environmental microorganism and better biodegradability than the surfactant synthesized from petroleum products.

Nitroxide supported on nanometric metal oxides as new hybrid catalysts for selective sugar oxidation,

Omri, M.; Becuwe, M.; Davoisne, C.; Pourceau, G.; Wadouachi, A.

J. Colloid Interface Sci. 2019, 536, 526-535.

A new series of supported organocatalysts, prepared by a simple method, were used for selective sugar oxidation. This approach is based on the immobilization of a nitroxide derivative through a carboxylic function on nanometric metal oxides (TiO2, Al2O3 and CeO2), allowing the recovery of the catalyst. These hybrid materials were carefully characterized by Diffuse Reflectance FT-IR spectroscopy (DRIFT), ThermoGravimetric Analysis (TGA), X-Ray Diffraction (XRD), Brunauer-Emmet-Teller surface area measurements (B.E.T.), elemental and electrochemical analyses, showing different characteristics and behaviors depending on the nature of the metal oxide used. The activity of the supported nitroxide catalyst was evaluated on methyl α-d-glucoside oxidation, used as model reaction. In all cases, high catalytic activity was highlighted, with up to 25 times less nitroxyl radical required for complete conversion than under homogeneous conditions. The influence of several experimental conditions such as the use of phosphate buffer and recyclability of the catalyst were also investigated.

Raising the redox potential in carboxyphenolate-based positive organic materials via cation substitution,

Jouhara, A.; Dupre, N.; Gaillot, A. C.; Guyomard, D.; Dolhem, F.; Poizot, P.

Nat Commun 2018, 9, 4401.

Meeting the ever-growing demand for electrical storage devices requires both superior and "greener" battery technologies. Nearly 40 years after the discovery of conductive polymers, long cycling stability in lithium organic batteries has now been achieved. However, the synthesis of high-voltage lithiated organic cathode materials is rather challenging, so very few examples of all-organic lithium-ion cells currently exist. Herein, we present an inventive chemical approach leading to a significant increase of the redox potential of lithiated organic electrode materials. This is achieved by tuning the electronic effects in the redox-active organic skeleton thanks to the permanent presence of a spectator cation in the host structure exhibiting a high ionic potential (or electronegativity). Thus, substituting magnesium (2,5-dilithium-oxy)-terephthalate for lithium (2,5-dilithium-oxy)-terephthalate enables a voltage gain of nearly +800 mV. This compound being also able to act as negative electrode via the carboxylate functional groups, an all-organic symmetric lithium-ion cell exhibiting an output voltage of 2.5 V is demonstrated.

An air-stable lithiated cathode material based on a 1,4-benzenedisulfonate backbone for organic Li-ion batteries,

Lakraychi, A. E.; Deunf, E.; Fahsi, K.; Jimenez, P.; Bonnet, J. P.; Djedaini-Pilard, F.; Bécuwe, M.; Poizot, P.; Dolhem, F.

Journal of Materials Chemistry A 2018.

To meet current market demands as well as emerging environmental concerns there is a need to develop less polluting battery technologies. Organic electrode materials could offer the possibility of preparing electrode materials from naturally more abundant elements and eco-friendly processes coupled with simplified recycling management. However, the potential use of organic electrode materials for energy storage is still challenging and a lot of developments remain to be achieved. For instance, promoting high-energy Li-ion organic batteries inevitably requires the development of lithiated organic electrode materials which are able to be charged (delithiated) at a high enough potential (>3 V vs. Li+/Li0) – a challenging point rarely discussed in the literature. Here, we evaluate tetralithium 2,5-dihydroxy-1,4-benzenedisulfonate as an air-stable lithiated cathode material for the first time and its reversible Li+ electrochemical extraction. Quite interestingly, in comparison with the dicarboxylate counterpart, it was observed that the theoretical two-electron reaction is readily reached with this organic structure and at an average operating potential of 650 mV higher.

Synthesis of phosphorus analogs of TSAO-T,

Moura, M.; Josse, S.; Postel, D.

Tetrahedron 2018, 74, 4721-4727.

Phosphorus Analogs of TSAO bearing an oxaphospholene ring instead of an oxathiole dioxide ring at C-3′ position were prepared. Strategy developed previously on saccharidic moiety was used with introduction of an electron withdrawing α group neighboring the phosphorus atom. Biological evaluation on both HIV-1 and HCV showed that these compounds have no activity.

The influence of chloride and hydrogen sulfate anions in two polymerised ionic liquids based on the poly(1-(hydroxyethyl)-3-vinylimidazolium cation, synthesis, thermal and vibrational studies,

Chaker, Y.; Debdab, M.; Belarbi, E. H.; Ilikti, H.; Haddad, B.; Moumene, T.; Wadouachi, A.; Van Nhien, A. N.; Abassi, H. B.; Abbas, O.; Bresson, S.

Eur. Polym. J. 2018, 108, 138-149.

The chemical reaction of 2-chloroethanol with 1-vinylimidazol as precursor led to the corresponding compound 1-hydroxyethyl-3-vinylimidazolium chloride [EtOHVIM+] [Cl−]. In the next step, treatment of [EtOHVIM+][Cl−] with 2,2-azobisisobutyronitril (AIBN) afforded the poly1-(hydroxyethyl)-3-vinylimidazolium chloride (poly[EtOHVIM+][Cl−]), Finally, the reaction of (poly[EtOHVIM+][Cl−]) and sulfuric acid led to poly 1-(hydroxyethyl)-3-vinylimidazolium hydrogen sulfate (poly[EtOHVIM+][HSO4−]) by replacing the [Cl−] halide by an [HSO4−] anion. The structure of these compounds was identified by 1H NMR, 13C NMR as preliminary spectroscopic characterization. To obtain information on the structure and vibrational behavior in these compounds, vibrational spectroscopy measurements were investigated by Fourier Transform-Infrared-Attenuated Total Reflectance and Fourier Transform Raman spectroscopy in the spectral range 600–4000 cm−1 and 4000–500 cm−1, respectively. The Polymerization of IL gave rise to specific marks in the Raman and IR spectra and enhanced its vibrational property. Also, in order to understand the thermal stability in these compounds, the results concerning the melting point, glass transition and decomposition were determined by thermogravimetric analysis (TGA), differential thermal (DTG), and differential scanning calorimetry (DSC). The results indicated that the poly [EtOHVIM+][HSO4−] compound showed interesting thermal properties like high temperature of degradation and low temperature of glass transition compared to poly[EtOHVIM+][Cl−].

XRD and ATR/FTIR investigations of various montmorillonite clays modified by monocationic and dicationic imidazolium ionic liquids,

Ahmed, A.; Chaker, Y.; Belarbi, E. H.; Abbas, O.; Chotard, J. N.; Abassi, H. B.; Van Nhien, A. N.; El Hadri, M.; Bresson, S.

J. Mol. Struct. 2018, 1173, 653-664.

Three different montmorillonites (Mts) labeled K10, KSF and SWy-3 were analyzed by X-ray diffraction and ATR/FTIR spectroscopy. The XRD results enabled validation of the purification process of the studied clays. In the spectral regions 3800–2600 and 1800-1300 cm-1, the study of different intensity ratios of peaks assigned to the OH bending and stretching modes displayed the specific vibrational behavior of SWy-3 which is certainly influenced by a greater proportion of Na+ in its structure. Before analyzing the clays modified by ionic liquids, we characterized two imidazolium based ionic liquids (ILs) with anion I-: [EMIM+] [I−] monocationic ionic liquid and [M(CH₂) IM2+] [2I−] dicationic ionic liquid. The passage from [EMIM+] [I−] to [M(CH₂) IM2+] [2I−] reveals significant vibrational changes through various modes: ν(NH), rings ν(CC), rings ν(CN), ν(CH2(N)), ν(CH3(N)) in addition to anion interaction modes. When purified, these ionic liquids modify clays, the XRD analysis shows that the studied modified clays exhibited higher d-value increase with respect to the purified Mts, and the reflection peaks 2θ (°) of plane (001) were displaced towards lower values as a consequence of the ionic liquid intercalation process. ATR/FTIR spectra recorded in the spectral zone 4000-600 cm-1 indicated the appearance of new peaks and a significant intensity variation between clays in relation to the type of chosen ionic liquid. These vibrational changes are directly connected to the presence of ionic liquids in clays. XRD and ATR/FTIR investigations show a stronger effect of the [M(CH2) IM2+] [2I−] dicationic ionic liquid on the Mts than the monocationic ionic liquid and the SWy-3 Mt is more sensitive to monocationic and dicationic ionic liquids than K10 and KSF Mts.

Synthesis and Insecticidal Activities of Novel Solanidine Derivatives,

Beaulieu, R.; Grand, E.; Stasik, I.; Attoumbre, J.; Chesnais, Q.; Gobert, V.; Ameline, A.; Giordanengo, P.; Kovensky, J.

Pest Manag Sci 2018, 0.

Potato (Solanum tuberosum) is the fourth culture in the world and is widely used in the agri-food industries. They generate by-products where alpha-chaconine and alpha-solanine, the two major solanidine based glycoalkaloids of potato, are present. As secondary metabolites, they play an important role in the protecting system of potato and are involved in plant protection against insects. To add value to these by-products, we described herein new glycoalkaloids that could have phytosanitary properties. RESULTS: Solanidine, as a renewable source, was modified with an azido linker and coupled by Copper catalyzed alkyne azide cycloaddition (CuAAC) to alkynyl derivatives of the monosaccharides found in the natural potato glycoalkakoids: D-glucose, D-galactose and L-rhamnose. The efficacy of our compounds was evaluated on the potato aphid Macrosiphum euphorbiae. The synthetic compounds have stronger aphicidal properties against nymphs than unmodified solanidine. They also showed strong aphicidal activities on adults and a negative impact on fecundity. CONCLUSION: Our synthetic neoglycoalkaloids affected Macrosiphum euphorbiae survival at the nymphal stage as well as at the adult stage. Furthermore, they induced a decrease of fecundity. Our results show that chemical modifications of by-products may afford new sustainable compounds for crop and plant protection. This article is protected by copyright. All rights reserved.


Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources
UMR 7378 CNRS
10 rue Baudelocque
80039 Amiens Cedex
tel/fax : 33 (0)3 22 82 75 60
N° SIRET : 19801344300017