Laboratoire LG2A
LG2A

Laboratoire de Glycochimie, des Antimicrobiens
et des Agroressources UMR 7378 CNRS

Nos tutelles

  • Tutelle du CNRS
  • Tutelle UPJV

Nos Fédérations

Intranet

Espace Communication

Risque allergique


Actualités et Publications

Oligogalacturonic Acid Inhibits Vascular Calcification by Two Mechanisms,

Hodroge, A.; Trécherel, E.; Cornu, M.; Darwiche, W.; Mansour, A.; Ait-Mohand, K.; Verissimo, T.; Gomila, C.; Schembri, C.; Da Nascimento, S.; Elboutachfaiti, R.; Boullier, A.; Lorne, E.; Courtois, J.; Petit, E.; Toumieux, S.; Kovensky, J.; Sonnet, P.; Massy, Z. A.; Kamel, S.; Rossi, C.; Ausseil, J.

Inhibition of Vascular Smooth Muscle Cell Osteogenic Conversion and Interaction With Collagen 2017.

Objective—Cardiovascular diseases constitute the leading cause of mortality worldwide. Calcification of the vessel wall is associated with cardiovascular morbidity and mortality in patients having many diseases, including diabetes mellitus, atherosclerosis, and chronic kidney disease. Vascular calcification is actively regulated by inductive and inhibitory mechanisms (including vascular smooth muscle cell adaptation) and results from an active osteogenic process. During the calcification process, extracellular vesicles (also known as matrix vesicles) released by vascular smooth muscle cells interact with type I collagen and then act as nucleating foci for calcium crystallization. Our primary objective was to identify new, natural molecules that inhibit the vascular calcification process.Approach and Results—We have found that oligogalacturonic acids (obtained by the acid hydrolysis of polygalacturonic acid) reduce in vitro inorganic phosphate–induced calcification of vascular smooth muscle cells by 80% and inorganic phosphate–induced calcification of isolated rat aortic rings by 50%. A specific oligogalacturonic acid with a degree of polymerization of 8 was found to inhibit the expression of osteogenic markers and, thus, prevent the conversion of vascular smooth muscle cells into osteoblast-like cells. We also evidenced in biochemical and immunofluorescence assays a direct interaction between matrix vesicles and COL1 via the GFOGER sequence thought to be involved in interactions with several pairs of integrins.Conclusions—Degree of polymerization of 8 inhibits vascular calcification development mainly by inhibition of osteogenic marker expression but also partly by masking the GFOGER sequence—thereby, preventing matrix vesicles from binding to COL1.

Kinetics of the incorporation of the main phenolic compounds into the lignan macromolecule during flaxseed development,

Ramsay, A.; Fliniaux, O.; Quéro, A.; Molinié, R.; Demailly, H.; Hano, C.; Paetz, C.; Roscher, A.; Grand, E.; Kovensky, J.; Schneider, B.; Mesnard, F.

Food Chem. 2017, 217, 1-8.

The main flax lignan, secoisolariciresinol diglucoside, is stored in a macromolecule containing other ester-bound phenolic compounds. In this study, NMR and HPLC-UV analyses were performed on flaxseeds harvested at different developmental stages to identify and quantify the main phenolic compounds produced during seed development. Extraction was carried out with or without alkaline hydrolysis to determine if these molecules accumulate in the lignan macromolecule and/or in a free form. Monolignol glucosides accumulate in a free form up to 9.85 mg/g dry matter at the early developmental stages. Hydroxycinnamic acid glucosides and flavonoid accumulate (up to 3.18 and 4.07 mg/g dry matter, respectively) in the later developmental stages and are ester-bound in the lignan macromolecule. Secosiolariciresinol diglucoside accumulates (up to 28.65 mg/g dry matter) in the later developmental stages in both forms, mainly ester-bound in the lignan macromolecule and slightly in a free form.

Anti-mycotoxin Effect and Antifungal Properties of Essential Oil from Ammodaucus leucotrichus Coss. & Dur. on Aspergillus flavus and Aspergillus ochraceus,

Khaldi, A.; Meddah, B.; Moussaoui, A.; Sonnet, P.

Journal of Essential Oil Bearing Plants 2017, 20, 36-44.

AbstractThe essential oil of Ammodaucus leucotrichus Coss. & Dur. seeds growing wild in SouthWest of Algeria were obtained by hydrodistillation and analysed by GC and GC-MS. Other parameters such as density, refractive index, optical rotation, freezing point, solubility in ethanol, acid value and ester index are also measured. The antifungal properties of the essential oil were conducted using biomass technique on liquid medium, mycotoxigenic test, mycelial growth, determination of minimum inhibitory concentration (MIC), sporulation and germination spores?. The essential oil was found to be active against Aspergillus flavus MTTC 2799 (Microbial Type Culture Collection and Gene Bank) and Aspergillus ochraceus CECT 2092 (Spanish Type Culture Collection). The GC and GC-MS data showed a total of 19 compounds were identified in the hydrodistilled oil. The oil was dominated by oxygenated monoteprenes represented by perilla aldehyde (81.62%).

Carboxylic and sulfonic N-substituted naphthalene diimide salts as highly stable non-polymeric organic electrodes for lithium batteries,

Lakraychi, A. E.; Fahsi, K.; Aymard, L.; Poizot, P.; Dolhem, F.; Bonnet, J. P.

Electrochem. Commun. 2017, 76, 47-50.

Two N-substituted naphthalene tetracarboxylic diimide (NTCDI) ionic compounds, carboxylic and sulfonic sodium salts, were prepared and used as positive electrode active materials in lithium-half cells. The aim of this investigation was to assess the solubility-suppressing effect of two different negatively charged substituent groups on a redox-active organic backbone using a carbonate-based liquid electrolyte. NTCDI derivatives were obtained in high yields from reaction of naphthalene tetracarboxylic dianhydride with neutralized glycine or with neutralized taurine. They were mixed with carbon black and cycled in galvanostatic mode against lithium metal using 1 M LiPF6 EC/DMC liquid electrolyte. These two NTCDI derivatives exhibit a quite stable electrochemical activity upon cycling at an average potential of 2.3 V vs. Li+/Li0 giving rise to specific capacity values of 147 mAh·g− 1 and 113 mAh·g− 1 for the dicarboxylate and the disulfonate derivative, respectively. This study clearly supports the useful effect of such grafted permanent charges as a general rule on the electrochemical stability of crystallized organic materials based on the assembly of small redox-active units.

Measurement of cytotoxicity and irritancy potential of sugar-based surfactants on skin-related 3D models,

Lu, B.; Miao, Y.; Vigneron, P.; Chagnault, V.; Grand, E.; Wadouachi, A.; Postel, D.; Pezron, I.; Egles, C.; Vayssade, M.

Toxicol. in Vitro 2017.

Sugar-based surfactants present surface-active properties and relatively low cytotoxicity. They are often considered as safe alternatives to currently used surfactants in cosmetic industries. In this study, four sugar-based surfactants, each with an eight carbon alkyl chain bound to a glucose or a maltose headgroup through an amide linkage, were synthesized and compared to two standard surfactants. The cytotoxic and irritant effects of surfactants were evaluated using two biologically relevant models: 3D dermal model (mouse fibroblasts embedded in collagen gel) and reconstituted human epidermis (RHE, multi-layered human keratinocytes). Results show that three synthesized surfactants possess lower cytotoxicity compared to standard surfactants as demonstrated in the 3D dermal model. Moreover, the IC50s of surfactants against the 3D dermal model are higher than IC50s obtained with the 2D dermal model (monolayer mouse fibroblasts). Both synthesized and standard surfactants show no irritant effects after 48 h of topical application on RHE. Throughout the study, we demonstrate the difficulty to link the physico-chemical properties of surfactants and their cytotoxicity in complex models. More importantly, our data suggest that, prior to in vivo tests, a complete understanding of surfactant cytotoxicity or irritancy potential requires a combination of cellular and tissue models.

Nanocrystalline cellulose-fullerene: Novel conjugates,

Herreros-López, A.; Carini, M.; Da Ros, T.; Carofiglio, T.; Marega, C.; La Parola, V.; Rapozzi, V.; Xodo, L. E.; Alshatwi, A. A.; Hadad, C.; Prato, M.

Carbohydr. Polym. 2017, 164, 92-101.

The covalent grafting of two amino-fullerene C60 derivatives (C60-LC-NH2 and C60-SC-NH2, LC = long chain and SC = short chain) onto the surface of TEMPO oxidized nanocrystalline cellulose (NCC-COOH) has been reported for the first time. These hybrids (NCC-LC-C60 and NCC-SC-C60) form stable colloidal suspensions at concentrations up to 0.5 mg/mL and act as effective photosensitizers for singlet oxygen production as demonstrated by the oxidation of L-methionine-methyl ester to the corresponding sulphoxide. Using the same approach, in a one-pot reaction both a fluorescent target molecule (FITC-LC-NH2) and the C60-LC-NH2 derivative have been successfully attached covalently onto the NCC-COOH surface. These hybrids, which showed no cytotoxicity on MCF-7 human breast cancer cells could be good candidates in photodynamic cancer therapy.


Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources
UMR 7378 CNRS
10 rue Baudelocque
80039 Amiens Cedex
tel/fax : 33 (0)3 22 82 75 60