

Chimie durable-organique (M1 - M2)

Chimie

Objectifs

Le parcours CD-Org a pour objectif de former des chimistes capables de proposer et de gérer des projets de recherche & développement (R&D), en intégrant les problèmes environnementaux et les contraintes législatives. Le parcours CD-Org met l'accent sur l'acquisition de nouvelles compétences nécessaires pour innover en faveur d'une chimie durable et pour le développement durable. La première année commune au parcours CD-Matériaux a pour objectif de donner une solide formation dans les domaines de la chimie organique, de la chimie des matériaux et de la physico-chimie. A l'issue du M1, l'étudiant choisira sa spécialisation de M2.

Compétences

- Concevoir et synthétiser de manière propre et durable les molécules et matériaux de demain
- Extraire, caractériser, analyser, contrôler les molécules et matériaux.
- Gérer l'éco-conception, le recyclage, l'analyse du cycle de vie, REACH...
- Gérer l'ensemble des aspects scientifiques, techniques, organisationnels d'un projet.
- Communiquer, présenter et convaincre sur ses projets.
- Approches juridiques, managériales et normatives.

Conditions d'accès

M1:L3 ou équivalent

M2 : M1 ou équivalent

Autres informations (FI)

Ce parcours est éligible à la bourse E-SENSE.

Obtenir plus d'informations : https://www.u-picardie.fr/lupjv/notre-ambition-france-2030/e-sense-tran...

Postuler à la bourse E-SENSE : https://extra.u-picardie.fr/limesurvey/index.php/229231?

Modalités de formation

FORMATION INITIALE

FORMATION CONTINUE

EN ALTERNANCE

Informations pratiques

Lieux de la formation

UFR des Sciences

Volume horaire (FC)

325 h en M2

Capacité d'accueil

16

Contacts Formation Initiale

Master Chimie Scolarité

scolarite.master.chimie@upicardie.fr

Plus d'informations

UFR des Sciences

Pôle scientifique Saint-Leu, 33 rue Saint-Leu 80039 Amiens Cedex 1

lang	=fr

France

https://sciences.u-picardie.fr/

Organisation

Organisation

Le master 2 est dispensé, en présentiel, en alternance sur le site de l'UPJV. Le quatrième semestre correspond à la réalisation du Projet de Fin d'Etudes (stage de 6 mois) en

laboratoire universitaire ou en industrie, en France ou à l'étranger pour la formation initiale et en entreprise en alternance pour la formation continue.

Période de formation

Formation en alternance 2 à 3 semaines en entreprise / 2 à 3 semaines à l'université

Contrôle des connaissances

Contrôle continu et/ou examens terminaux.

Modalités de contrôle des connaissances à voir sur la page web de l'UFR.

Responsable(s) pédagogique(s)

Responsables Master Chimie parcours CDMat et CDOrg

master-chimie-CDMat&CDOrg@u-picardie.fr

Programmes

SEMESTRE 1 MASTER 1 CHIMIE - CDORG	Volume horaire	СМ	TD	TP	ECTS
Bonus Optionnel Master 1 Semestre 1					
COMPÉTENCES TRANSVERSALES 1					3
Anglais	12		12		
Préparation à l'insertion professionnelle	8			8	
Projet encadré	10			10	
OUTILS STATISTIQUES-PLANS D'EXPÉRIENCES					3
Les outils statistiques et les plans d'expériences	20	12	8		
Remise à niveau en mathématiques	10		10		
FORMULATION ET GÉNIE DES PROCÉDÉS					3
Formulation	12	12			
Génie des procédés	24	24			
ANALYSES CHIMIQUES					3

Electrochimie analytique	20	8	8	4	
Spectroscopies atomiques	14	6	4	4	
ANALYSES STRUCTURALES 1					3
Spectroscopies IR et UV	16	2	8	6	
Spectrométrie RMN 1D	18	6	12		
LA CHIMIE DURABLE - LES RESSOURCES RENOUVELABLES	22	22			3
CHIMIE ORGANIQUE AVANCÉE	36	24	12		3
MATÉRIAUX INORGANIQUES : STRATÉGIE DE SYNTHÈSE	36	24	12		3
CHIMIE EXPÉRIMENTALE 1					3
Chimie expérimentale inorganique	19			19	
Chimie expérimentale organique	19			19	
DÉVELOPPEMENT DURABLE					3
Bioraffineries	12	12			
Système pour le stockage et la conversion de l'énergie	12	12			

SEMESTRE 2 MASTER 1 CHIMIE - CDORG	Volume horaire	СМ	TD	TP	ECTS
MOYENNE HORS STAGE CDORG					
ANALYSES STRUCTURALES 2					3
Microscopie	16	8	8		
RMN 2D	12	4	8		
Spectrométrie de masse	10	4	6		
CHIMIE EXPÉRIMENTALE 2					3
Chimie inorganique expérimentale	15			15	
Chimie organique expérimentale	15			15	
CRISTALLOGRAPHIE-DIFFRACTION	35	22	13		3
COMPÉTENCES TRANSVERSALES 2					3
Anglais	12		12		
Le développement durable dans l'entreprise	10			10	
Opérations unitaires	20	20			
OUTILS POUR LA SYNTHÈSE ORGANIQUE	35	23	12		3
OUVERTURE PROFESSIONNELLE					3
Projet bibliographique	10		5	5	

Visites d'entreprise	20			20	
RESSOURCES, ÉCO-CONCEPTION ET RECYCLAGE DES MATÉRIAUX	20	20			3
TECHNIQUES CHROMATOGRAPHIQUES	30	10	8	12	3
STAGE/X S2 M1 CHIMIE					
STAGE EN ALTERNANCE					6
Communication scientifique	15			15	
Stage					
STAGE					6
Bonus Optionnel Master 1 Semestre 2					

SEMESTRE 3 CHIMIE – CHIMIE DURABLE ORGANIQUE	Volume horaire	СМ	TD	TP	ECTS
ACTEURS DU FINANCEMENT ET DE LA RÉGLEMENTATION EN RECHERCHE					3
Réglementation et environnement-ACV-Reach	12	12			
Réseaux Industrie-Recherche / Propriété intellectuelle	16	16			
ANALYSES STRUCTURALES 3					3
Applications de la spectroscopie de masse	22	22			
RMN du solide	10	10			
UE/X OPT I S3 CDORG					
CATALYSES ORGANIQUE ET ENZYMATIQUE					3
Catalyse enzymatique	15	10	5		
Catalyse organométallique	25	20	5		
ETUDE STRUCTURALE					3
Modélisation moléculaire	10	10			
RMN	20	14	6		
GLYCOCHIMIE ET MODIFICATIONS DES POLYSACCHARIDES	30	20	10		3
MATÉRIAUX ET APPLICATIONS INDUSTRIELLES	30	24	6		3
PROPRIETE PHYSICO-CHIMIQUES MATERIAUX-CHIMIE DES DEFAUTS	30	24	6		3
SYNTHÈSE ASYMÉTRIQUE-CHIMIE SUPRAMOLÉCULAIRE					3
Chimie supramoléculaire	10	10			
Synthèse asymétrique	25	15	10		

STRATÉGIES ET MÉTHODES EN SYNTHÈSE	25	15	10		3
SYNTHÈSE ET PROPRIÉTÉS DE NANOOBJETS-MATÉRIAUX HYDRIDES	25	14	3	8	3
TECHNIQUES ET PROCÉDÉS EN CHIMIE VERTE	20	14	6		3
UE/X OPT 2 S3 CDORG					
CATALYSES ORGANIQUE ET ENZYMATIQUE					3
Catalyse enzymatique	15	10	5		
Catalyse organométallique	25	20	5		
ETUDE STRUCTURALE					3
Modélisation moléculaire	10	10			
RMN	20	14	6		
GLYCOCHIMIE ET MODIFICATIONS DES POLYSACCHARIDES	30	20	10		3
MATÉRIAUX ET APPLICATIONS INDUSTRIELLES	30	24	6		3
PROPRIETE PHYSICO-CHIMIQUES MATERIAUX-CHIMIE DES DEFAUTS	30	24	6		3
SYNTHÈSE ASYMÉTRIQUE-CHIMIE SUPRAMOLÉCULAIRE					3
Chimie supramoléculaire	10	10			
Synthèse asymétrique	25	15	10		
STRATÉGIES ET MÉTHODES EN SYNTHÈSE	25	15	10		3
SYNTHÈSE ET PROPRIÉTÉS DE NANOOBJETS-MATÉRIAUX HYDRIDES	25	14	3	8	3
TECHNIQUES ET PROCÉDÉS EN CHIMIE VERTE	20	14	6		3
UE/X OPT 3 S3 CDORG					
CATALYSES ORGANIQUE ET ENZYMATIQUE					3
Catalyse enzymatique	15	10	5		
Catalyse organométallique	25	20	5		
ETUDE STRUCTURALE					3
Modélisation moléculaire	10	10			
RMN	20	14	6		
GLYCOCHIMIE ET MODIFICATIONS DES POLYSACCHARIDES	30	20	10		3
MATÉRIAUX ET APPLICATIONS INDUSTRIELLES	30	24	6		3
PROPRIETE PHYSICO-CHIMIQUES MATERIAUX-CHIMIE DES DEFAUTS	30	24	6		3

SYNTHÈSE ASYMÉTRIQUE-CHIMIE SUPRAMOLÉCULAIRE					3
Chimie supramoléculaire	10	10			
Synthèse asymétrique	25	15	10		
STRATÉGIES ET MÉTHODES EN SYNTHÈSE	25	15	10		3
SYNTHÈSE ET PROPRIÉTÉS DE NANOOBJETS-MATÉRIAUX HYDRIDES	25	14	3	8	3
TECHNIQUES ET PROCÉDÉS EN CHIMIE VERTE	20	14	6		3
UE/X OPT 4 S3 CDORG					
CATALYSES ORGANIQUE ET ENZYMATIQUE					3
Catalyse enzymatique	15	10	5		
Catalyse organométallique	25	20	5		
ETUDE STRUCTURALE					3
Modélisation moléculaire	10	10			
RMN	20	14	6		
GLYCOCHIMIE ET MODIFICATIONS DES POLYSACCHARIDES	30	20	10		3
MATÉRIAUX ET APPLICATIONS INDUSTRIELLES	30	24	6		3
PROPRIETE PHYSICO-CHIMIQUES MATERIAUX-CHIMIE DES DEFAUTS	30	24	6		3
SYNTHÈSE ASYMÉTRIQUE-CHIMIE SUPRAMOLÉCULAIRE					3
Chimie supramoléculaire	10	10			
Synthèse asymétrique	25	15	10		
STRATÉGIES ET MÉTHODES EN SYNTHÈSE	25	15	10		3
SYNTHÈSE ET PROPRIÉTÉS DE NANOOBJETS-MATÉRIAUX HYDRIDES	25	14	3	8	3
TECHNIQUES ET PROCÉDÉS EN CHIMIE VERTE	20	14	6		3
UE/X OPT 5 S3 CDORG					
CATALYSES ORGANIQUE ET ENZYMATIQUE					3
Catalyse enzymatique	15	10	5		
Catalyse organométallique	25	20	5		
ETUDE STRUCTURALE					3
Modélisation moléculaire	10	10			
RMN	20	14	6		
GLYCOCHIMIE ET MODIFICATIONS DES POLYSACCHARIDES	30	20	10		3

MATÉRIAUX ET APPLICATIONS INDUSTRIELLES	30	24	6		3
PROPRIETE PHYSICO-CHIMIQUES MATERIAUX-CHIMIE DES DEFAUTS	30	24	6		3
SYNTHÈSE ASYMÉTRIQUE-CHIMIE SUPRAMOLÉCULAIRE					3
Chimie supramoléculaire	10	10			
Synthèse asymétrique	25	15	10		
STRATÉGIES ET MÉTHODES EN SYNTHÈSE	25	15	10		3
SYNTHÈSE ET PROPRIÉTÉS DE NANOOBJETS-MATÉRIAUX HYDRIDES	25	14	3	8	3
TECHNIQUES ET PROCÉDÉS EN CHIMIE VERTE	20	14	6		3
UE/X OPT 6 S3 CDORG					
CATALYSES ORGANIQUE ET ENZYMATIQUE					3
Catalyse enzymatique	15	10	5		
Catalyse organométallique	25	20	5		
ETUDE STRUCTURALE					3
Modélisation moléculaire	10	10			
RMN	20	14	6		
GLYCOCHIMIE ET MODIFICATIONS DES POLYSACCHARIDES	30	20	10		3
MATÉRIAUX ET APPLICATIONS INDUSTRIELLES	30	24	6		3
PROPRIETE PHYSICO-CHIMIQUES MATERIAUX-CHIMIE DES DEFAUTS	30	24	6		3
SYNTHÈSE ASYMÉTRIQUE-CHIMIE SUPRAMOLÉCULAIRE					3
Chimie supramoléculaire	10	10			
Synthèse asymétrique	25	15	10		
STRATÉGIES ET MÉTHODES EN SYNTHÈSE	25	15	10		3
SYNTHÈSE ET PROPRIÉTÉS DE NANOOBJETS-MATÉRIAUX HYDRIDES	25	14	3	8	3
TECHNIQUES ET PROCÉDÉS EN CHIMIE VERTE	20	14	6		3
Bonus Optionnel Master 2 Semestre 3					
COMPÉTENCES TRANSVERSALES 3					3
Anglais	12		12		
Hygiène et sécurité	18	18			
OUVERTURE PROFESSIONNELLE					3

Gestion de projet Recherche	15	15		
Structuration et Gestion des entreprises-Droit du travail	25	25		

SEMESTRE 4 CHIMIE – CHIMIE DURABLE ORGANIQUE	Volume horaire	СМ	TD	ТР	ECTS
STAGE/X S4 M2 CHIMIE					
STAGE ALTERNANCE					30
Communication scientifique	35			35	
Stage en contrat de professionnalisation/Apprentissage					
Veille scientifique	35			35	
STAGE					30
Bonus Optionnel Master 2 Semestre 4					

A savoir

Niveau II (Licence ou maîtrise universitaire)

Niveau d'entrée :

Niveau de sortie : Niveau I (supérieur à la maîtrise)

Références et certifications

Codes ROME: H - Industrie

Autres informations (FC)

Ce parcours est éligible à la bourse E-SENSE.

Obtenir plus d'informations: https://www.u-picardie.fr/lupjv/notre-ambition-france-2030/e-sense-tran...

 $Postuler\ \grave{a}\ la\ bourse\ E-SENSE: \underline{https://extra.u-picardie.fr/limesurvey/index.php/229231?lang=fr}$

Contacts Formation Continue

SFCU

03 22 80 81 39

sfcu@u-picardie.fr

10 rue Frédéric Petit 80048 Amiens Cedex 1

<u>France</u>

Le 17/12/2025