Tacripyrines have been designed by combining an acetylcholinesterase (AChE) inhibitor (**tacrine**) with a **1,4-dihydropyridine** calcium antagonist, such as nimodipine, and are targeted to develop a multitarget therapeutic strategy to confront Alzheimer's disease (AD).

Tacripyrines

(Ethyl 5-amino-4-aryl-2-methyl-1,4,6,7,8,9-hexahydrobenzo[b] [1,8]naphthyridine-3-carboxylates)

Tacripyrines are selective and potent AChE inhibitors, in the nanomolar range, neuroprotective agents, showing moderate Ca²⁺ channel blocking effect, and cross the blood-brain barrier, emerging as lead candidates for treating AD.

Particularly, the mixed type inhibition of hAChE activity of *p*-methoxytacripyrine (IC₅₀ = 15 nM) is associated to a 30.7% inhibition of the pro-aggregating action of AChE on the β -amyloid (A β) and a moderate inhibition of A β self-aggregation (34.9%). The racemate has been separated, and both enantiomers have been investigated for their ChE and A β enzymatic activities.

Thus, the (S)-enantiomer of p-methoxytacripyrine has emerged as a new promising drug candidate inhibiting cholinesterase activity, amyloid aggregation and showing significant neuroprotective properties against A β - induced cytotoxicity. Molecular modeling indicates that binding of p-methoxytacripyrine to the AChE PAS mainly involves the (S)-enantiomer, which also agrees with the noncompetitive inhibition mechanism exhibited by p-methoxytacripyrine.

[2006JMC7607; 2009JMC7607; ChemMedChem, in press (DOI: 10.1002/cmdc.201100239)]

Prof. José L. Marco-Contelles

Laboratorio de Radicales Libres y Química Computacional Instituto de Química Orgánica General (CSIC) 3, Juan de la Cierva; 28006-Madrid (Spain)

Tel.: 34 91 562 29 00 FAX: 34 91 564 48 53 e-mail: iqoc21@iqog.csic.es