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Abstract 
 
We show that the findings of Mercurio and Spokoiny (2004) concerning their 
alternative LAVE approach for volatility estimation are not necessarily true for 
another type of volatile time series, as far as comparison to the usual 
GARCH(1,1) process is concerned. However, we propose another use of LAVE 
for the purpose of level, not volatility, modeling – and in our case it turns out to 
be successful. 
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1. INTRODUCTION AND MOTIVATION 
 
For managing risk that we are faced with at the stock market, volatility 
modeling has become the leading issue. Although the main part of attention in 
the field of volatility research is focused on the recognized GARCH models 
and their modifications (see for example survey of Li, Ling and McAleer, 
2002), a different approach to volatility modeling was proposed by Mercurio 
and Spokoiny (2004). They presented the so-called LAVE (Locally Adaptive 
Volatility Estimate) method, and by applying it to nine USD exchange-rate time 
series they showed that it outperformed the usual GARCH(1,1) model. 
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This idea is quite attractive – especially because of its simplicity, regular 
simultaneous checking with self-adapting, and the fact that no assumptions 
about parametric structure are needed. Thus, the size of a sample is not so 
crucial any more, and since the LAVE method aims at modeling the local 
dynamics of the volatility process, it is particularly appropriate for the short-
term forecasting.  
 
Therefore, we wanted to find out, whether this alternative method is valid also 
for some other type of volatile data. We applied the LAVE approach to daily 
return time series of leading stock market indexes from five Central European 
emerging markets (i.e. Czech PX, Hungarian BUX, Polish WIG20, Slovakian 
SAX and Slovenian SBI20) as well as from two developed European financial 
markets (i.e. British FTSE100 and German DAX). It turned out that in general 
the dominance of LAVE approach over GARCH(1,1) model cannot be 
straightforwardly assumed for every type of time series. 
 
However, we made a step further on by extending the applicability of LAVE 
method, and showed that we can take advantage of LAVE calculations to 
improve the original time series (i.e. level) models as well. We found that in 
our case the new ARIMA-LAVE model evidently outperforms the ARIMA-
GARCH-M model, both from fitting as well as from forecasting point of view. 
 
We begin by shortly describing the LAVE approach presented by Mercurio and 
Spokoiny (2004). Next, we propose the use of the LAVE term as an 
improvement in return (i.e. level) modeling. Then we do the empirical 
application, consisting of a closer look at the analyzed data, comparison of the 
LAVE approach to GARCH(1,1) model on the basis of quality of volatility 
estimation, and comparison of the ARIMA model, refined with the GARCH 
supplement, to the ARIMA model, where the additional GARCH refinements 
are substituted by LAVE term, from the quality of level forecasting point of 
view. Finally, the conclusions are drawn. 
 
2. VOLATILITY MODELING  
 
Volatility, or conditional standard deviation, is an interesting and important 
feature of a financial time series, since it is a key element of risk. And risk – 
considered as the probability that our expectations don’t come true – has a very 
high price. The higher the variability of a process the higher this probability. 
Thus, estimating volatility is essential especially at stock market, where 
volatility defines risk factor β  in a CAPM model, serves as a basis for option 
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pricing and computing VaR (Value at Risk), helps defining the confidence 
intervals of the underlying process more precisely, and the like. 
 
It needs to be stressed that taking volatility into account leads us also to more 
efficient statistical estimators. Since Mandelbrot’s finding (1963) about 
empirical distributions being more leptokurtic and fat-tailed than normal, 
scientists have been searching for the most appropriate model. Engle (1982) 
and Bollerslev (1986) were successful with their (G)ARCH models, because 
these models imitate the empirical leptokurtic and volatility-clustering 
processes quite satisfactorily. Since then we have witnessed an outburst of 
modifications and derivations based on (G)ARCH model. One of the surveys of 
the (G)ARCH variations is presented for example by Li, Ling and McAleer 
(2002). 
 
Later, an alternative LAVE method was proposed, and it was shown that it 
outperformed the most common GARCH(1,1) model. The reader is referred to 
the article of Mercurio and Spokoiny (2004) to get detailed information on this 
method, whereas in the following subsection the basic idea of LAVE method is 
described and commented. 
 

2.1. Locally Adaptive Volatility Estimate (LAVE) 
 

LAVE (Locally Adaptive Volatility Estimate) does not assume any parametric 
form of the volatility process. The main presumption is that the volatility can be 
approximated by a constant over some interval. Therefore, the basic problem 
here is finding this interval of homogeneity. With the LAVE approach the 
model is regularly checked and adapted to the data, meaning that for every time 
point τ  we estimate the past interval of time homogeneity [ ]ττ ,m− , over 

which the volatility τσ  is nearly constant. Once this interval is defined, we 
estimate the corresponding volatility, which can then be used for one-step 
ahead forecasting. It is assumed that the interval of time homogeneity will be 
extended into the next day implying that volatility remains approximately 
constant – we therefore consider the volatility to have the characteristics of a 
martingale. 
 
The underlying process ( )log( 1−= ttt SSR ) is modeled as conditional 
heteroscedastic by  

tttR ξσ= ,                                                               (1) 
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where tξ  with 1≥t  is a sequence of independent standard Gaussian random 

variables, and tσ  is volatility, which is in general a predictable random process 

dependent on the first 1−t  observations. From multiplicative model we 
construct an additive one via transformation. Since log-transformation results in 
highly skewed distribution of the errors tξ , we take advantage of power 

transformation (for every 0>γ ): 
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The local time homogeneity approach assumes that the volatility function tσ  is 

nearly constant within an interval [ ]ττ ,mI −= . The process tR  follows the 
equation (2) with the constant trend that can be estimated by averaging over the 
interval I  as 

∑
∈

=
It

tI R
I

γθ ||
||

1~
, 

with the conditional standard deviation estimate 21||~~ −= Isv II θγ , where 

γγγ CDs = . 
 
Given the observations τRR ,...,1  and using the above relations, we try to 

estimate the parameter value τθ  by its estimator Iθ
~

, with properly chosen 

time interval I , in order to minimize the estimation error. 
 
The logic behind this procedure is as follows. Let I  be a time homogenous 
interval candidate. This means that time homogeneity is expected in I  as well 
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as in every subinterval J , IJ ⊂ , with estimates of τθ  over I  and J  
almost coinciding. The aim of this method is practically searching for the 
largest possible interval I , such that the hypothesis about τθ  being constant 

over I  is not rejected. For testing this hypothesis, we examine subintervals of 
the form [ ] ,,, mmmJ <′′−= ττ  by comparing two different estimates of 

τθ  – one is calculated on the interval J  and the other one on its complement 

=K I \ J [ ]mm ′−−= ττ , . With high probability it holds that 
22 ~~|~~| JKJK vv +≤− λθθ , λ  being sufficiently large. We continue with 

lengthening the interval I  until the hypothesis is rejected. 
  
When conducting the empirical analysis we consider a simple proposal by 
Mercurio and Spokoiny (2004) about using a regular time grid with step 

∈0m �, that is ,...2,1,0 == kkmtk , to define the intervals. For a given 
time point τ , the set � of interval candidates is defined as 

� [ ]{ },...2,1,:, 0 =−≤== kmttI kkk ττ . 

Next, for every interval kI  we define the set �( kI ) of testing subintervals 

kk IJ ⊂′ , such that [ ]τ,kk tJ ′′ =  for all kk tt >′  belonging to the time grid. 

The homogeneity of kI  is then tested by comparing the pairs of estimates of 

θ~  for complementary subintervals for all ∈J �( kI ). 

Since the grid step 0m  completely determines the intervals, it should be chosen 
as small as possible to minimize the delay before the LAVE algorithm can 
detect a change point. However, it should be large enough to ensure stability of 
the estimates v~ . The value of 100 =m  was pointed out as a good 
compromise by Mercurio and Spokoiny (2004). The authors also suggest the 
use of the smoothing parameter 74.2=λ  (calculated on the simulated data) 
and power transformation 5.0=γ , where they argue that the latter is 
preferable to the more natural 0.2=γ , despite the loss of efficiency, since it 
assures greater normality of the errors. 
 
The described algorithm is simple to program and self-adapting estimation is 
highly appreciated. It is especially welcome in estimating time series that are 
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subject to possible structural breaks, since they are self-detected and taken care 
of. Moreover, due to local adapting, long data series are not required any more.  
 
However, when conducting the empirical application on a different type of 
data, it turned out that the LAVE method is not necessarily more successful in 
explaining the variation of conditional standard deviation than the usual 
GARCH(1,1) model (cf. Section 4.2). 
 
Nevertheless, because of its simplicity and no assumptions, we checked 
whether the LAVE method can be applied in some other way as well. Our 
proposal, that proved successful in empirical application (cf. section 4.3), is to 
include the LAVE term into the model for return, i.e. level, modeling. This idea 
is described in the following section.  
 
3. LEVEL MODELING  
 
Despite increasing importance of volatility modeling in financial area, level 
modeling shouldn’t be forgotten either. It still represents the basis for most of 
the trading conducted on security markets.  
 
Therefore, we were interested in the Box-Jenkins ARIMA models, refined with 
volatility terms. First, we propose an ARIMA model with LAVE correction, 
which is then compared to the Bollerslev’s ARIMA model with additional 
GARCH terms. 

 
3.1. ARIMA-LAVE model 

 
To account for volatility in an ARIMA model, we simply include the 
conditional standard deviation, as estimated by the LAVE method, as an 
additional explanatory variable. This is not a true multivariate model, since it is 
set up only with the underlying variable and its derivation: 
 

ttttt LAVERR εαεααα ++++= −− 312110 ,                                          (3) 

where ∑
∈

==
Ii

iI R
I

LAVE 2||
||

1~θ  with I  being the corresponding 

interval of homogeneity. 
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4. EMPIRICAL APPLICATION 
 
In the empirical part of their paper Mercurio and Spokoiny (2004) analyzed 
daily exchange rates of the U. S. dollar (USD) against 9 currencies from 
financially developed countries: Australian dollar (AUD), British pound (GPB), 
Canadian dollar (CAD), Danish krone (DKK), Japanese yen (JPY), Norwegian 
krone (NOK), New Zealand dollar (NZD), Swiss franc (CHF) and Swedish 
krona (SEK). 
 
Besides exchange rates, interest rates, and inflation, is also stock index return 
one of the most typical financial time series. Therefore, our analysis was 
conducted on the data for stock index daily returns from five Central European 
emerging stock markets and two developed stock markets for the period from 
the beginning of the year 1996 till the end of the year 2005.  
 

4.1. The data 
 
The stock indexes included in the analysis were the following: 

 PX is the leading index of Prague Stock Exchange (Burza cenných 
papírů Praha). It is calculated as a market-capitalization-weighted 
price index of (currently) 9 stocks with base date April 5th, 1994. 

 BUX is the leading index of Budapest Stock Exchange (Budapesti 
értéktőzsde). It is calculated as a market-capitalization-weighted 
performance index of 12 stocks with base date January 2nd, 1991. 

 WIG20 is the leading index of Warsaw Stock Exchange (Giełda 
papierów wartościowych w Warszawie). It is calculated as a market-
capitalization-weighted price index of 20 stocks with base date April 
16th, 1994. 

 SAX is the leading index of Bratislava Stock Exchange (Burza 
cenných papierov v Bratislave). It is calculated as a market-
capitalization-weighted total return index of (currently) 5 stocks with 
base date September 14th, 1993. 

 SBI20 is the leading index of Ljubljana Stock Exchange (Ljubljanska 
borza). It is calculated as a market-capitalization-weighted price index 
of (currently) 15 stocks with base date January 1st, 1994. 

 
These data differ from the exchange rates that were analyzed by Mercurio and 
Spokoiny (2004) from two aspects. One, the stock index returns can be 
considered more volatile than exchange rates (absence of the authority such as 
the central bank, more frequent trading, more unexpected events resulting in 
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extreme stock prices,…). Two, the emerging markets themselves are supposed 
to be more volatile than the developed (Aggarwal, Inclan, Leal (1999)). To 
control for the last distinction we included also two “developed” leading stock 
indexes: 
 

 FTSE100 is the leading index of London Stock Exchange. It is 
calculated as a market-capitalization-weighted price index of 100 
stocks with base date December 30th, 1983. 

 DAX is the leading index of German Stock Exchange (Deutsche 
Börse). It is calculated as a market-capitalization-weighted return 
index of 30 stocks with base date December 30th, 1987. 

 
The descriptive statistics of these seven index daily return time series, 
calculated as ( )1ln −= ttt PPr , where tP  is the index value on the day t , are 
summarized in Table 1. The period analyzed is from the beginning of January 
1996 till the end of December 2005 for all seven time series in question. 
 
The time series of daily return on SBI20 and its histogram are graphed in 
Figures 1 and 2, respectively. The other time series exhibit similar patterns of 
changing volatility of the underlying time series and peakedness of the 
distribution. Throughout the whole paper the figures are thus prepared for 
SBI20. If not stressed differently, the presented characteristics are not much 
different for the other analyzed indexes. 
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Table 1: Descriptive statistics of daily index return time series 
 

Index Number of 
observations 

Minimum Maximum Mean Standard 
deviation 

Skewness Kurtosis 

PX 2502 -0,0708 0,0582 0,000486 0,0123 -0,28 5,12 
BUX 2486 -0,1803 0,1362 0,001044 0,0184 -0,93 15,57 
WIG20 2500 -0,1032 0,0765 0,000480 0,0175 -0,18 5,71 
SAX 2426 -0,1148 0,0957 0,000407 0,0140 -0,40 9,11 
SBI20 2498 -0,1161 0,1893 0,000481 0,0115 0,89 47,13 
FTSE100 2524 -0,0559 0,0590 0,000168 0,0113 -0,14 5,53 
DAX 2527 -0,0665 0,0755 0,000345 0,0159 -0,15 5,35 

 
Sources: Own calculations based on the data from Ljubljana Stock Exchange, ISI Emerging Markets, 
[http://finance.yahoo.com/q/hp?S=%5EFTSE] and [http://finance.yahoo.com/q/hp?S=%5EDAXI] 
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Figure 1: Daily return on Slovenian leading stock exchange index SBI20 

 
Source: Own calculations based on the data from Ljubljana Stock Exchange 
 
Figure 2: Histogram for daily return on Slovenian leading stock exchange 

index SBI20 (with normal curve) 

 
Source: Own calculations based on the data from Ljubljana Stock Exchange 



EAST-WEST Journal of ECONOMICS AND BUSINESS 
 

 65

From the presented data we can see that these time series are far from being 
normally distributed. If the distributions of the returns were normal, the kurtosis 
would be equal to 3, whereas we get the kurtosis coefficient values from 5,12 
for PX up to 47,13 for SBI20, which means that the probability distributions are 
highly leptokurtic, as is also seen from Figure 2.  
 
If we pay some more attention to Figure 1, where the line chart of daily return 
on SBI 20 time series is shown, we notice clearly visible volatility clusters 
indicating the alternating periods of high and low volatility. 
 
As expected, we see that the average daily return on FTSE100 (and DAX) is 
considerably lower than mean daily returns on emerging market stock indexes. 
This was anticipated since emerging markets are supposed to be less efficient 
(for example Claesens, Dasgupta, Glen, 1995, Deželan, 2000, Mramor, 2003, 
Mramor, Umberger, Hieng, 2006) and therefore more prone to possibilities of 
earning some extra profit. Also the standard deviation of FTSE100 daily returns 
is lower than the others, but surprisingly, this is not true for DAX. 
 
Using standard deviation as a measure of variability, we can observe changing 
of yearly variability for each index, as presented in Table 2.  
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Table 2: Yearly standard deviation of daily return time series for the seven indexes 
 

Year PX BUX WIG20 SAX SBI20 FTSE100 DAX 
1996 0,006879 0,015078 0,015794 0,011917 0,018856 0,005931 0,008060 
1997 0,010184 0,025235 0,018191 0,012833 0,023158 0,009524 0,014750 
1998 0,015049 0,030640 0,026401 0,015218 0,011015 0,013386 0,018162 
1999 0,013205 0,019975 0,018105 0,019547 0,006732 0,011292 0,013844 
2000 0,015698 0,016955 0,021244 0,014615 0,005481 0,012025 0,015095 
2001 0,014097 0,014175 0,018434 0,013953 0,005773 0,013261 0,018045 
2002 0,013904 0,014668 0,015298 0,014429 0,011103 0,017343 0,025192 
2003 0,009632 0,011243 0,014136 0,011468 0,005893 0,012216 0,019768 
2004 0,009754 0,010727 0,010865 0,010810 0,004972 0,006514 0,009919 
2005 0,011074 0,015062 0,010764 0,012646 0,005227 0,005510 0,007624 

 
Sources: Own calculations based on the data from Ljubljana Stock Exchange, ISI Emerging Markets, 
[http://finance.yahoo.com/q/hp?S=%5EFTSE] and [http://finance.yahoo.com/q/hp?S=%5EDAXI] 
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We notice that yearly standard deviation for FTSE100 and DAX is changing in 
the same sense – from low in 1996 to very high in 2002 and back to low in the 
last two observed years. Very low return variability in the last years is also 
observed for SBI20, and moderately low for WIG20 and SAX. When analyzing 
yearly variability of BUX daily returns, we can conclude that it is lower in the 
second half of the observed period (after 2001), whereas the yearly variability 
of daily returns on PX has become high again in the last two observed years. 
Roughly it looks like the yearly variability of daily index returns is decreasing 
in emerging markets (excluding PX) indicating that the initial briskness of 
trading on various arbitrage possibilities is slowly coming to an end. 
 
One of the most obvious characteristic of all analyzed time series we have 
observed is that they are highly leptokurtic; this is a characteristic of a great 
majority of financial time series that is supposed to be most nicely captured by 
GARCH method, as far as volatility modeling is concerned. We will check 
whether LAVE method serves better than GARCH also in our case – as it was 
shown by Mercurio and Spokoiny (2004) for their data. 
 

4.2. Volatility modeling 
 
The results of LAVE estimation of intervals of time homogeneity and their 
volatility for Slovenian stock exchange index SBI20 are presented in Figures 3a 
and 3b. 
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Figure 3a: Estimated length of interval of time homogeneity for returns on 
SBI20 
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Source: Own calculations based on the data from Ljubljana Stock Exchange 
 
Figure 3b: Estimated corresponding volatility for returns on SBI20 
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Source: Own calculations based on the data from Ljubljana Stock Exchange 
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It can be observed that during the periods of lower volatility the intervals 
become larger and the other way around. The estimated volatility nicely 
coincides with the basic picture of daily return on SBI20 as well. 

 
 Comparison of LAVE with GARCH  Model 

 
To compare the LAVE performance with the more recognized GARCH 
approach, we do the volatility estimation also by one of the most common and 
most widely used models – GARCH(1,1) model by Bollerslev (1986). 
 
The estimated GARCH(1,1) model for the whole analyzed period for SBI20 
index daily return volatility is  
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with generalized error distribution. 
 
For the beginning, we check the successfulness of the LAVE method against 
the usual GARCH(1,1) model by comparing standardization of absolute 
returns. Namely, for all analyzed time series we observe highly persistent 
autocorrelation function of absolute daily returns, as presented in Figure 4a for 
SBI20. This statement holds for all analyzed time series, except for SAX, 
where only few first lags are slightly significant (see Figure 4b). Exceptionally 
low stock turnover on Bratislava Stock Exchange, in absolute as well as in 
relative sense (only 0,2 % of stock turnover in total turnover – as opposed to 
40,8 % at Ljubljana Stock Exchange, 43,0 % at Warsaw Stock Exchange, 62,5 
% at Budapest Stock Exchange, 66,1 % at Prague Stock Exchange, 65,5 % at 
London Stock Exchange and 83,4 % at German Stock Exchange – Source: own 
calculations based on FESE data), very probably causes greater randomness of 
stock trading. 
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Figure 4a: Autocorrelation function for absolute returns on SBI20  

 
Source: Own calculations based on the data from Ljubljana Stock Exchange 
 
Figure 4b: Autocorrelation function for absolute returns on SAX 

 
Source: Own calculations based on the ISI Emerging Markets data 
In order to determine which model is more appropriate for dealing with this 
issue, we compare the autocorrelations of standardized absolute returns, i.e. 
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returns divided by the estimated standard deviation (volatility). The following 
figures represent autocorrelations of absolute daily returns on SBI20, 
standardized by conditional standard deviations as estimated by LAVE 
procedure (Figure 5a), and autocorrelations of absolute daily returns on SBI20, 
standardized by conditional standard deviations as estimated by GARCH(1,1) 
model (Figure 5b).  
 
Figure 5a: Autocorrelation function for absolute daily returns on SBI20, 

standardized by LAVE 

Source: Own calculations based on the data from Ljubljana Stock Exchange 
 



EAST-WEST Journal of ECONOMICS AND BUSINESS 
 

 72

Figure 5b: Autocorrelation function for absolute daily returns on SBI20, 
standardized by GARCH(1,1) 

 
Source: Own calculations based on the data from Ljubljana Stock Exchange 
We observe that the autocorrelation function of standardized absolute returns is 
not significant any more, except for the first lag by GARCH(1,1) 
standardization and the first three lags by LAVE standardization. This leads us 
to the conclusion that explaining the data by LAVE approach is quite 
satisfactory but not as successful as with GARCH(1,1). The same conclusion 
can be drawn also for the rest of the analyzed indexes, even for SAX. 
 
To compare the two methods also via quality of forecasting, we check this 
other aspect in a similar way as Mercurio and Spokoiny (2004) did. Since 
volatility is a hidden process, it can be observed only together with the 
multiplicative error. According to (1), it holds that 2

1
2

1 )( ++ =ℑ tttRE σ , and 
therefore the QFC (Quality of the Forecast Criterion) can be defined as  
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The two authors were interested in a robust criterion, not too sensitive to the 
outliers, so they used the value of 5.0=p  instead of more common 2=p . 
In their research the results for 2=p  were in favor of GARCH(1,1).  
 
If we, too, set 5.0=p , and observe the two models’ goodness of fit for the 
whole analyzed period, we get the results as presented in Table 3: 
 
Table 3: Relative fitting performance, period 1996-2005, 5.0=p  

Index QFC LAVE / QFC GARCH(1,1) 

PX 1,006 
BUX 1,054 
WIG20 1,002 
SAX 0,987 
SBI20 1,048 
FTSE100 1,033 
DAX 1,037 

Sources: Own calculations based on the data from Ljubljana Stock Exchange, 
ISI Emerging Markets, [http://finance.yahoo.com/q/hp?S=%5EFTSE] and 
[http://finance.yahoo.com/q/hp?S=%5EDAXI] 
 
The results show that in our case for 5.0=p  the GARCH(1,1) method is 
superior for all index daily return time series, except for SAX. However, in our 
opinion, outliers are of a crucial importance, as far as modeling volatility in 
stock or index returns is concerned. It is very likely that they are not a 
consequence of a measurement error, but simply the fact. Properly detecting the 
timing and possibly the amplitude of a price-shock is a huge advantage at stock 
trading, and therefore the method shouldn’t be too robust to outliers. Thus, we 
use 2=p  instead of 5.0=p  and get the following results:  
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Table 4: Relative fitting performance, period 1996-2005, 2=p  

Index QFC LAVE / QFC GARCH(1,1) 

PX 0,998 
BUX 0,971 
WIG20 1,006 
SAX 0,974 
SBI20 0,971 
FTSE100 1,025 
DAX 1,034 

Sources: Own calculations based on the data from Ljubljana Stock Exchange, 
ISI Emerging Markets, [http://finance.yahoo.com/q/hp?S=%5EFTSE] and 
[http://finance.yahoo.com/q/hp?S=%5EDAXI] 
 
Here, the results are a little bit more in favor of LAVE, but they are not very 
convincing, either.  
 
However, since we are more interested in volatility forecasting than fitting, we 
also check how the two compared models behave in the forecasting sense. For 
this purpose we estimate the GARCH(1,1) model on the first nine observed 
years only and then use the obtained model to produce forecasts through the 
whole last year. The forecasting model representation, based on data from 1996 
till 2004, for SBI20 is: 
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again with generalized error distribution. 
 
The LAVE method estimates and forecasts the volatility simultaneously. 
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Table 5: Relative forecasting performance for the year 2005 (GARCH(1,1) 
model is estimated on the basis of data from 1996 till 2004), 2=p  

Index QFC LAVE / QFC GARCH(1,1) 

PX 0,925 
BUX 0,909 
WIG20 0,945 
SAX 1,042 
SBI20 1,202 
FTSE100 0,973 
DAX 0,893 

Sources: Own calculations based on the data from Ljubljana Stock Exchange, 
ISI Emerging Markets, [http://finance.yahoo.com/q/hp?S=%5EFTSE] and 
[http://finance.yahoo.com/q/hp?S=%5EDAXI] 
 
Now, the conclusion regarding volatility modeling is not a straightforward one. 
From Table 3 we can observe that in our case, for 5.0=p , the LAVE 
approach is not appropriate at all. Table 4 includes estimates for 2=p  and 
shows somewhat more favorable situation for the alternative method, and Table 
5 contains similar results. 
 
Therefore, even under different assumptions, we cannot reliably claim that our 
findings support those of Mercurio and Spokoiny (2004) about LAVE method 
outperforming GARCH(1,1) in general. 
 

4.3. Level modeling 
 
Nevertheless, because of its simplicity and no need of assumptions, we checked 
whether the LAVE method can be successfully used in level modeling as well.  
 
Like with volatility modeling, we try to determine the goodness of fit first. For 
this purpose we estimate the two compared models on the basis of all observed 
data, i.e. from 1996 till 2005. The presented ARIMA(0,0,1)-LAVE model 
specification is again calculated for SBI20: 
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where again ∑
∈

==
Ii

iI R
I

LAVE 2||
||

1~θ  with I  being the 

corresponding interval of homogeneity. 
 
In Figure 6 the quantile-quantile (Q-Q) plot for comparison of the distribution 
of the estimated against the distribution of the actual values for daily returns on 
SBI20 is presented. 
 
Figure 6: Quantile-quantile plot – comparison of the distribution of the 

ARIMA-LAVE-estimated values against the distribution of the 
actual values for daily returns on SBI20  
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Source: Own calculations based on the data from Ljubljana Stock Exchange 
 
From Figure 6 we observe that the ARIMA-LAVE model is quite satisfactory 
at capturing the characteristics of return distribution. Except from a part of the 
left tail and an outlier at the far right end of distribution, the points form a 
straight line, indicating the similarity of the two compared distributions. 
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Comparison of ARIMA-LAVE with ARIMA-GARCH(1,1)-M model 
 
To compare the LAVE level-modeling performance with a more common and 
recognized approach, we do the return estimation also by the ARIMA(1,0,0)-
GARCH(1,1)-M model (GARCH-in-Mean form as proposed by Engle, Lilien 
and Robins, 1987) (again, estimated on the data from the whole analyzed 
period 1996-2005): 
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(5) 
 
Figure 7: Quantile-quantile plot – comparison of the distribution of the 
ARIMA-GARCH-M-estimated values against the distribution of the actual 
values for daily returns on SBI20  
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Source: Own calculations based on the data from Ljubljana Stock Exchange 
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Figure 7 presents an almost identical Q-Q plot as Figure 6.  
 
From the Q-Q point of view we cannot decide which of the two methods serves 
better in estimating the original time series. We can only see that, regarding the 
similarity of the actual and estimated distributions, both methods are 
satisfactory. The same is observed from Q-Q plots for PX and WIG20 as well, 
whereas for BUX and SAX the tails of distributions are not modeled properly, 
neither with LAVE nor with GARCH correction. For FTSE100 and DAX, too, 
the two compared models do not fit the data best, as far as distribution is 
concerned – the actual distribution is namely even more leptokurtic than the 
modeled one. But, taking Q-Q plots into account, unlike the rest of the analyzed 
indexes, FTSE100 and DAX are modeled somewhat better with ARIMA-
GARCH(1,1)-M than with ARIMA-LAVE approach. 
 
As for analytical comparison, it is difficult to decide which error measurement 
to use. Armstrong and Collopy (1992) show that there is no error measure that 
would serve best in general. From the most widely used measures they argue in 
favor of MAPE (Mean Absolute Percentage Error) over MSE (Mean Square 
Error). MSE is shown to be a poor protection against outliers. However, MAPE 
is relevant for ratio-scaled data (with meaningful zero), which is not the case 
here. Besides, the outliers cause a problem only if we compare the 
successfulness of a method across many time series. We, on the contrary, only 
compare the methods separately for each time series. Armstrong and Collopy 
(1992) also stress, that their study ignores large errors that are sometimes the 
primary concern, and that in such case the MSE might be appropriate. To avoid 
the dilemma, we introduce a compromise that was briefly mentioned (but not 
used or described) already by Armstrong and Collopy (1992) – we calculate the 
MSPE (Mean Square Percentage Error): 
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where tŷ  are forecasts, ty  are actual values, T  is number of observations in 

the sample, and ( )hTT ++ ,1  is a time interval of the forecasts made on the 
basis of the first T  observations. 
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In Table 6 the MSPE values are stated for the whole 10-year period for models 
such as (3) and (4) for SBI20.  
 
Table 6: MSPE, period 1996-2005 – the lowest value is bolded 

Index ARIMA-LAVE ARIMA-GARCH(1,1)-M 
PX 1,73 2,54 
BUX 68,24 142,52 
WIG20 5,31 10,12 
SAX 4,84 1,03 
SBI20 70,45 228,35 
FTSE100 1,11 2,31 
DAX 1,16 2,91 

Sources: Own calculations based on the data from Ljubljana Stock Exchange, 
ISI Emerging Markets, [http://finance.yahoo.com/q/hp?S=%5EFTSE] and 
[http://finance.yahoo.com/q/hp?S=%5EDAXI] 
 
As far as goodness of fit, measured by MSPE, is concerned, it is obvious that 
the original time series is more successfully fitted by the proposed ARIMA-
LAVE model than by the GARCH model. The only exception is SAX time 
series.  
 
Again, we are more interested in forecasting than fitting, so we compare the 
two modeling approaches also from the forecasting point of view. We estimate 
both volatility ARIMA modifications on the first nine observed years and then 
use the obtained model to forecast the daily return through the whole last year. 
The forecasting model representations, based on data from 1996 till 2004, for 
SBI20 are thus: 
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and 
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ARIMA(0,0,1)-GARCH(1,1)-

M:
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The MSPE for the forecasts are presented in Table 7. 
 
Table 7: MSPE for the year 2005 (the two forecasting models are estimated on 

the basis of data from 1996 till 2004) – the lowest value is bolded  
Index ARIMA-LAVE ARIMA- GARCH(1,1)  

PX 1,32 1,95 
BUX 4,43 12,27 
WIG20 3,46 3,20 
SAX 0,94 1,02 
SBI20 4,95 13,45 
FTSE100 1,05 2,85 
DAX 0,98 1,34 

Sources: Own calculations based on the data from Ljubljana Stock Exchange, 
ISI Emerging Markets, [http://finance.yahoo.com/q/hp?S=%5EFTSE] and 
[http://finance.yahoo.com/q/hp?S=%5EDAXI] 
The ARIMA-LAVE approach is, for six of the seven analyzed stock index time 
series – this time the exception is WIG20 – apparently more successful also as 
a forecasting tool. 
 
5. DISCUSSION AND CONCLUDING REMARKS 
 
Mercurio and Spokoiny (2004) proposed an alternative approach to volatility 
estimation, called LAVE (Locally Adaptive Volatility Estimate), that, in their 
research, outperformed the renowned GARCH(1,1) model. Besides, LAVE is a 
simple non-parametric method and therefore we don’t need to bother about the 
model specification. The model is estimated promptly and the programming 
algorithm is not too involving and is easy to understand.  
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We applied the LAVE method on a different type of data to check whether 
LAVE can be successfully used for volatility estimation of other sorts of time 
series as well. Instead of exchange rates for nine developed countries we 
analyzed daily returns of five stock indexes from emerging markets of Central 
Europe (and two additional from the developed markets). 
 
The results of volatility modeling are not as convincing as expected. The 
differences (with regard to the original empirical application) may arise from 
the different type of data. As far as comparison of the two time series from 
developed stock markets to the other five time series from emerging markets is 
concerned, no distinction could be drawn between the two samples. (However, 
the SAX stock index daily return time series was many times an exception, and 
this is probably due to very low stock turnover in Bratislava.) Therefore the 
reason for different behavior of the method on our data set as compared to the 
one of Mercurio and Spokoiny (2004) is very likely not the state of 
development of the financial markets. The distinctive point is probably that the 
stock index returns are much more volatile than the exchange rates that were 
analyzed by the two authors. 
 
Nevertheless, we propose another use of LAVE calculations. We set up a 
model for level estimation by including the estimated conditional volatility as 
an additional explanatory variable in the basic ARIMA model. When compared 
to ARIMA-GARCH-M model, the new model proves to be more successful.  
 
Since there are many possibilities of optimizations on both sides (changing grid 
step, smoothing parameter and power transformation for LAVE; using different 
modifications and moving (rolling) estimate for GARCH), none of the two 
methods is to be dismissed. LAVE approach is easily understood, more 
intuitive, and doesn’t require parametric assumptions, while GARCH models 
are well-known and included in statistical packages. But of course, it can 
always be argued also about which ARIMA model representation to use and 
about which error measure to rely on.  
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