

UFR des Sciences

Pôle scientifique Saint-Leu, 33 rue Saint-Leu

80039 Amiens Cedex 1 https://sciences.u-picardie.fr/

Domaine

Sciences, Technologie, Santé

Modalités de formation

Formation initiale Formation continue

Effectifs

Capacité d'accueil : 24 étudiants

Lieu(x) de formation

UFR des Sciences

UFR de Médecine

Contact

Laurence Fournier <u>laurence.fournier@u-picardie.fr</u>

Candidature

https://www.upicardie.fr/formation/candidater-sinscrire/

Formation continue

Volume horaire: 1320 h

Contact : 03 22 80 81 39 <u>sfcu@u-picardie.fr</u>

Demander une étude personnalisée de financement : https://www.u-picardie.fr/formation/formation-projet-formation

En savoir plus sur la Formation continue : https://www.u-picardie.fr/sfcu/

MASTER

INGÉNIERIE DES SYSTÈMES COMPLEXES

......

Les plus de cette formation

La modélisation est devenue de plus en plus abondante dans la recherche biomédicale. La complexité des phénomènes biologiques est particulièrement bien adaptée à des approches quantitatives car elle offre des nouveaux défis et opportunités. Ainsi la modélisation contribue à la recherche biomédicale en aidant à élucider les mécanismes et en fournissant des prédictions quantitatives qui peuvent être validées. Les modèles complètent alors les études expérimentales et cliniques, mais aussi remettent en question les paradigmes actuels, redéfinissent notre compréhension des mécanismes biologiques et les futures recherches en biologie.

Parcours

• Modélisation pour la biologie et la santé (M1 - M2)

Compétences

Dans une formation pluridisciplinaire, à l'interface entre biologie, physique, informatique et mathématique, l'objectif du master est de former de futurs ingénieurs, médecins, et chercheurs à la conception de modèles complexes intervenant dans des problématiques biomédicales. La modélisation touche aujourd'hui de nombreux secteurs d'activités allant de l'industrie pharmaceutique à la recherche fondamentale en passant par la santé publique.

Conditions d'accès

M1 : titulaire d'une licence de sciences ou santé ou équivalent

M2: titulaire d'un master 1 ou équivalent

Après la formation

Poursuite d'études

A l'issue de leur Master, les étudiants ayant choisi de réaliser leurs stages dans une structure de recherche peuvent poursuivre par un doctorat dans une des Écoles Doctorales de l'UPJV.

Débouchés professionnels

Il est important de noter que le métier de « bioingénieur », classé parmi les 100 métiers les plus réputés aux États-Unis, est actuellement en plein essor en France et en Europe. En France on parle d'ingénieur en modélisation et simulation dont le recrutement est fait majoritairement à travers les étudiants titulaires d'un Master.

Organisation

Le S1 permet de renforcer les connaissances en biologie, modélisation et programmation. Il est composé de 5 UE obligatoires et de 2 options à choisir parmi 3.

Durant le S2, les applications biomédicales se précisent. Ce semestre est composé de 4 UE obligatoires et de 3 options à choisir parmi 4.

Le S3 est dédié à des cours spécialisés et particulièrement à la mode de la biologie systémique réunissant toutes les compétences abordées en première année. 2 UE obligatoires et 4 options à choisir parmi 6 forment ce semestre.

Un stage ou un mémoire d'une durée de 4 à 6 mois conclut le master.

Volume horaire: 1702 h au total, dont 462 h en M1, et 240 en M2

Contrôle des connaissances

Contrôle continu et/ou examens terminaux écrits ou oraux.

Modalités de contrôle des connaissances à voir sur la page web de l'UFR.

Responsable(s) pédagogique(s)

Responsable M1 Mohammed Guedda mohamed.guedda@u-picardie.fr

Responsable M2 Halima Ouadid-Ahidouch halima.ouadid-ahidouch@u-picardie.fr

Références & certifications

Codes ROME:

Programme

SEMESTRE 1 INGENIERIE DES SYSTEMES COMPLEXES	Volume horaire	СМ	TD	TP	ECTS
ANGLAIS SCIENTIFIQUE	20		20		3
BIOLOGIE PHYSIOLOGIE	48	24	24		6
INTRODUCTION À LA MODÉLISATION	48	24	24		6
INTRODUCTION À LA PROGRAMMATION SCIENTIFIQUE	48	12	12	24	6
OUTILS BIBLIOGRAPHIQUES, PROJET TUTEURÉ	24	12	12		3
OPT 1 S1 INGENIERIE SYSTEMES COMPLEXES					
- Biophysique	30	15	15		3
- Statistique	30	15	15		3
- Traitement du Signal	30	15	15		3
OPT 2 S1 INGENIERIE SYSTEMES COMPLEXES					
- Biophysique	30	15	15		3
- Statistique	30	15	15		3
- Traitement du Signal	30	15	15		3
BONUS OPTIONNEL MASTER 1 SEMESTRE 1					
SEMESTRE 2 INGENIERIE DES SYSTEMES COMPLEXES	Volume horaire	СМ	TD	TP	ECTS
MODÉLISATION AVANCÉE	48	24	24		6
OUTILS NUMÉRIQUES	48	12	12	24	6
PROJET DE RECHERCHE	30		30		6
SÉMINAIRES	12		12		3
OPT 1 S2 INGENIERIE SYSTEMES COMPLEXES					
- Analyse des Données	30	15	15		3
- Biochimie	30	15	15		3
- Droit de la Santé et Bioéthique 1	30		30		3
- Module Expérimental	30	12		18	3
OPT 2 S2 INGENIERIE SYSTEMES COMPLEXES					
- Analyse des Données	30	15	15		3
- Biochimie	30	15	15		3
- Droit de la Santé et Bioéthique 1	30		30		3
- Module Expérimental	30	12		18	3
OPT 3 S2 INGENIERIE SYSTEMES COMPLEXES					
- Analyse des Données	30	15	15		3
- Biochimie	30	15	15		3
- Droit de la Santé et Bioéthique 1	30		30		3
- Module Expérimental	30	12		18	3
BONUS OPTIONNEL MASTER 1 SEMESTRE 2					
SEMESTRE 3 MODELISATION POUR LA BIOLOGIE ET LA SANTE	Volume horaire	СМ	TD	TP	ECTS
CONDUITE DE PROJET PROFESSIONNEL	30	6	24		3
PROJET DE CLASSE INVERSÉE	18	6	12		3

SEMESTRE 3 MODELISATION POUR LA	Volume	СМ	TD	TP	ECTS
BIOLOGIE ET LA SANTE	horaire				
OPT 1 S3 MODELISATION BIOLOGIE SANTE					
- Cours Spécialisé Recherche	48	24	24		6
- Dynamique Cellulaire et Canaux Ioniques	48	24	24		6
- Dynamique du Système Intracrânien	48	24	24		6
- Mouvements et Déformations Cellulaires	48	24	24		6
- PK/PD : du Médicament à l'Effet	48	24	24		6
- Réseaux Biochimiques	48	24	24		6
OPT 2 S3 MODELISATION BIOLOGIE SANTE					
- Cours Spécialisé Recherche	48	24	24		6
- Dynamique Cellulaire et Canaux Ioniques	48	24	24		6
- Dynamique du Système Intracrânien	48	24	24		6
- Mouvements et Déformations Cellulaires	48	24	24		6
- PK/PD : du Médicament à l'Effet	48	24	24		6
- Réseaux Biochimiques	48	24	24		6
OPT 3 S3 MODELISATION BIOLOGIE SANTE					
- Cours Spécialisé Recherche	48	24	24		6
- Dynamique Cellulaire et Canaux Ioniques	48	24	24		6
- Dynamique du Système Intracrânien	48	24	24		6
- Mouvements et Déformations Cellulaires	48	24	24		6
- PK/PD : du Médicament à l'Effet	48	24	24		6
- Réseaux Biochimiques	48	24	24		6
OPT 4 S3 MODELISATION BIOLOGIE SANTE					
- Cours Spécialisé Recherche	48	24	24		6
- Dynamique Cellulaire et Canaux Ioniques	48	24	24		6
- Dynamique du Système Intracrânien	48	24	24		6
- Mouvements et Déformations Cellulaires	48	24	24		6
- PK/PD : du Médicament à l'Effet	48	24	24		6
- Réseaux Biochimiques	48	24	24		6
BONUS OPTIONNEL MASTER 2 SEMESTRE 3					
SEMESTRE 4 MODELISATION POUR LA BIOLOGIE ET LA SANTE	Volume horaire	СМ	TD	ТР	ECTS
STAGE					30
BONUS OPTIONNEL MASTER 2 SEMESTRE 4					